Skip to main content

Fabrication and Characterization of High-Conductivity Bilayer Electrolytes for Intermediate-Temperature Solid Oxide Fuel Cells

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

A stable bilayer electrolyte with high ionic conductivity was developed for intermediate-temperature solid oxide fuel cell operation. The bilayer structure improved the limited thermodynamic stability of bismuth oxides and prevented electronic conductivity of ceria-based oxides in reducing atmosphere. Bilayer electrolytes were formed by depositing thin and thick layers of erbia-stabilized bismuth oxide (ESB) on samaria-doped ceria (SDC) substrates, via pulsed laser deposition and dip-coating techniques. Scanning electron microscope (SEM) images of the ESB/SDC samples showed dense ESB layers and excellent adherence between both ESB and SDC phases. Interdiffusion between the two phases was not detected by X-ray diffraction and EDX. Measurements of the conductivity of SDC coated with ESB exhibited slightly higher total conductance than SDC.

Document Type: Research Article

DOI: https://doi.org/10.1111/j.1551-2916.2005.00475.x

Affiliations: Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611

Publication date: 2005-09-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more