Skip to main content

Modeling the Influence of Reactive Elements on the Work of Adhesion between Oxides and Metal Alloys

Buy Article:

$43.00 plus tax (Refund Policy)

A method is presented that allows determination of the work of adhesion between oxides and metals using a macroscopic atom model. The method allows complex interfaces to be modeled easily and the influence of additives and impurities to be assessed. The model is used to study the work of adhesion between α-Al2O3 and -NiAl. This interface is of importance for the performance of thermal barrier coatings as applied to jet turbines. The model shows that the work of adhesion is not significantly altered by so-called reactive element additions. Reactive elements are known to improve the durability at the alloy/oxide interface and include elements such as Zr, Y, and Hf added in concentrations of less than 1 at.%. A significant weakening of the interface is predicted when impurities such as sulfur and carbon are present. The model also predicts a large interaction enthalpy between the reactive elements and impurities. It is proposed that the primary effect of reactive element additions is impurity scavenging. The impurities are fixed in the bulk of the alloy by the reactive elements and cannot diffuse to the oxide/metal interface to weaken it.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: 1: Netherlands Institute of Metals Research, Delft, The Netherlands 2: Department of Materials Science and Technology, Delft University of Technology, Delft, The Netherlands

Publication date: 2005-08-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more