Skip to main content

Effect of Oxygen Segregation at Grain Boundaries on Deformation of B, C-Doped Silicon Carbides at Elevated Temperatures

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

The effect of oxygen segregation at grain boundaries on the deformation of 1 wt% boron (B)- and carbon (C)-doped -silicon carbide (B, C-doped SiC) was investigated by compression testing at 2073 K. We studied the deformation of sinter-forged B, C-doped SiC (sinter-forged SiC), which contained the minimum amount (0.07 wt%) of oxygen as an impurity, and that of hot isostatically pressed B, C-doped SiC (HIPed SiC), which contained 1 wt% oxygen. Oxygen was detected at grain boundary in HIPed SiC by energy-dispersive X-ray spectroscopy, but it was not detected in sinter-forged SiC. The strain rate of sinter-forged SiC was one order of magnitude lower than that of HIPed SiC at the same grain size. The grain growth rate of sinter-forged SiC was lower than that of HIPed SiC also. These results suggest that the oxygen segregation at grain boundaries, together with boron segregation, promoted the grain-boundary diffusion in B, C-doped SiC. But, the oxygen segregation without boron was less effective in promoting deformation than the boron segregation without oxygen.

Document Type: Research Article

DOI: https://doi.org/10.1111/j.1551-2916.2005.00326.x

Affiliations: Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, 226-8503, Japan

Publication date: 2005-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more