Skip to main content

Interfacial Reaction of BaTiO3 Ceramics with PbO–B2O3 Glasses

Buy Article:

$51.00 plus tax (Refund Policy)


Interfacial reactions of pure, lead-, and zirconium-substituted BaTiO3 ceramics with PbOB2O3 glasses were studied, with an emphasis on the effect of glass composition. Microstructures were analyzed by scanning electron microscopy and electron-probe microanalysis aided with X-ray diffractometry of powder mixtures in the system BaTiO3PbOB2O3 heated at 850°C. The interfacial microstructures were divided into two types, depending on the glass composition. The first type was characterized by precipitates of TiO2 dispersed in the glass matrix. Extended heating or limited glass volume resulted in the formation of a continuous layer of BaTi(BO3)2. The second type of microstructure was characterized by a lead-rich perovskite phase, which developed at the glass/ceramic interfacial region. Growth kinetics for this phase denied the diffusion-controlled mechanism. The substitution of lead in BaTiO3 enhanced the penetration of glass into the ceramics along the grain boundaries and developed a coreshell structure.

Document Type: Research Article


Affiliations: Faculty of Science and Technology, Keio University, Yokohama 223, Japan

Publication date: January 1, 1997


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more