Skip to main content

High‐Performance Hydroxyapatite Scaffolds for Bone Tissue Engineering Applications

Buy Article:

$51.00 plus tax (Refund Policy)


Hydroxyapatite (HA) macrochanneled porous scaffolds were produced by polymer sponge templating method using a reactive submicrometer powder synthesized by hydroxide precipitation sol–gel route. The microstructure of the fine HA powder was carefully investigated and developed in order to optimize the mechanical properties and phase stability of sintered scaffold. The templating method ensured a highly interconnected macrochanneled porous structure with over 500 μm mean pore size and 90% porosity. The high reactivity of the powder led to an efficient sintering mechanism with a high and crack‐free linear shrinkage (19 ± 2%) and a significant BET specific surface area reduction (from 12 to 0.33 m2/g). The powder does not dissociate into secondary phases during sintering. Despite the extreme porosity, the scaffolds had high mechanical performance (compressive strength ∼0.51 MPa, Weibull modulus 4.15) compared with literature data and with scaffolds similarly prepared from high‐quality commercial HA powder.

Document Type: Research Article


Affiliations: Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy

Publication date: 2012-05-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more