If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Geoadditive Models for Regional Count Data: An Application to Industrial Location

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

We propose a geoadditive negative binomial model (Geo‐NB‐GAM) for regional count data that allows us to address simultaneously some important methodological issues, such as spatial clustering, nonlinearities, and overdispersion. This model is applied to the study of location determinants of inward greenfield investments that occurred during 2003–2007 in 249 European regions. After presenting the data set and showing the presence of overdispersion and spatial clustering, we review the theoretical framework that motivates the choice of the location determinants included in the empirical model, and we highlight some reasons why the relationship between some of the covariates and the dependent variable might be nonlinear. The subsequent section first describes the solutions proposed by previous literature to tackle spatial clustering, nonlinearities, and overdispersion, and then presents the Geo‐NB‐GAM. The empirical analysis shows the good performance of Geo‐NB‐GAM. Notably, the inclusion of a geoadditive component (a smooth spatial trend surface) permits us to control for spatial unobserved heterogeneity that induces spatial clustering. Allowing for nonlinearities reveals, in keeping with theoretical predictions, that the positive effect of agglomeration economies fades as the density of economic activities reaches some threshold value. However, no matter how dense the economic activity becomes, our results suggest that congestion costs never overcome positive agglomeration externalities.

Nuestra propuesta se basa en un modelo geoaditivo binomial (Geo‐NB‐GAM) para datos de recuento regionales (regional count data) que nos permitan abordar simultáneamente distintos temas metodológicos importantes como la concentración espacial (clustering), no linealidades y sobre‐dispersión. Este modelo es aplicado al estudio de determinantes de localización de nuevas inversiones de tipo greenfield internas (inward greenfield investments) que se dieron entre 2003 y 2007, en 249 regiones europeas. Luego de presentar el conjunto de datos y de mostrar la presencia de sobre‐dispersión y agrupación (concentración) espacial, examinamos el marco teórico que motiva los determinantes de localización incluidos en el modelo empírico, y resaltamos algunas de las razones por las que las relaciones entre ciertas co‐variables y la variable dependiente podrían ser no lineales. La sección subsiguiente comienza con descripción de las soluciones propuestas por la literatura anterior para abordar la concentración espacial, no linealidades, y sobre‐dispersión, para luego presentar el Geo‐NB‐GAM. El análisis empírico muestra el buen desempeño del Geo‐NB‐GAM. Particularmente, la inclusión del componente geo‐aditivo (una superficie de tendencia espacial suavizada) nos permite controlar heterogeneidades espaciales no observadas que inducen a la concentración espacial. Al permitir no linealidades se revela ‐continuando con las predicciones teóricas‐ que el efecto positivo de las economías de aglomeración se desvanece a medida que la densidad de las actividades económicas alcanza un umbral de valor. Sin embargo, sin importar cuán densa llegue a ser la actividad económica, nuestros resultados sugieren que los costes de congestión nunca superan las externalidades de aglomeración positivas.

2003‐2007249Geo‐NB‐GAM.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/gean.12001

Publication date: January 1, 2013

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more