Continuous‐Time Modeling with Spatial Dependence

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

(Spatial) panel data are routinely modeled in discrete time (DT). However, compelling arguments exist for continuous‐time (CT) modeling of (spatial) panel data. Particularly, most social processes evolve in CT, so that statistical analysis in DT is an oversimplification, gives an incomplete representation of reality, and may lead to misinterpretation of estimation results. The most compelling reason for a CT approach is that, in contrast to DT modeling, it allows adequate modeling of dynamic adjustment processes. This article introduces spatial dependence in a CT modeling framework. We propose a nonlinear structural equation model (SEM) with latent variables for estimation of the exact discrete model (EDM), which links CT model parameters to DT observations. The use of a SEM with latent variables enables a specification that accounts for measurement errors in the variables, leading to a reduction of attenuation bias (i.e., disattenuation). The SEM‐CT model with spatial dependence developed here is the first dynamic SEM with spatial dependence. A simple regional labor market model for Germany, comprising changes in unemployment and population as endogenous state variables, and changes in regional average wages and in the structure of the manufacturing sector as exogenous input variables, illustrates this spatial econometric SEM‐CT framework.

El modelamiento de datos panel espaciales se realiza habitualmente utilizando una conceptualización del tiempo discreto (TD). Sin embargo, existen argumentos de peso para conceptualizar el tiempo de manera continua (TC). En concreto, la mayoría de procesos sociales se desarrolla en TC, por lo que el análisis estadístico en DT trae como consecuencia una simplificación excesiva de los procesos, da una representación incompleta de la realidad, y puede conducir a una interpretación errónea de los resultados de la estimación. La razón más convincente para el uso de un enfoque CT es que a diferencia de modelos DT, una conceptualización CT permite el modelado adecuado de los procesos de ajuste dinámico (dynamic adjustment). Este artículo incorpora la dependencia espacial en un marco de modelamiento con CT. Los autores proponen un modelo de ecuaciones estructurales no lineal (nonlinear structural equation model ‐SEM) con variables latentes para la estimación del modelo discreto exacto (exact discrete model‐EDM), que vincula los parámetros del modelo CT a las observaciones de DT. El uso de un SEM con variables latentes permite una especificación que da cuenta de los errores de medición en las variables, dando lugar a una reducción del sesgo de atenuación (es decir, “desatenuacion”). El modelo SEM‐CT con dependencia espacial desarrollado en el presente estudio es el primer SEM dinámico con dependencia espacial.

Para ilustrar el marco conceptual SEM‐CT los autores presentan un modelo simple del mercado laboral regional de Alemania. El modelo está compuesto por los cambios en el desempleo y la población como variables endógenas de estado, y los cambios en los salarios regionales promedio y en la estructura del sector manufacturero como variables de entrada exógenas.

DTCTDTCTCTCTDTEDMSEMSEMSEM‐CTSEMSEM‐ CT

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1538-4632.2011.00834.x

Publication date: January 1, 2012

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more