A Hierarchical Flow Capturing Location Problem with Demand Attraction Based on Facility Size, and Its Lagrangian Relaxation Solution Method

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

This article presents a hierarchical flow capturing location problem (HFCLP) and proposes an effective Lagrangian heuristic solution method. The original flow capturing location problem (FCLP) aims to locate a given number of facilities on a network to maximize the total flow that can be serviced at facilities along their preplanned routes, such as daily commute to work. We extend the original model to allow a decision maker to select the size of facilities among m different size alternatives. Larger facilities are assumed to be more attractive and, therefore, can attract more customers, but they cost more to construct than smaller ones. Customers deviate from their preplanned routes to access a facility's service when the size of the facility is sufficiently large. The degree of deviation from the original path is measured by the additional distance customers have to go to access facilities, and the acceptable deviation distance becomes larger as the size of a facility increases. This article presents a new problem in which the number of facilities of each size and their locations are simultaneously determined so as to capture as much flow as possible within the total budget available for locating all facilities. We present an integer programming formulation of the problem and devise a Lagrangian relaxation solution method. The proposed algorithm is tested using road networks with 300 and 500 nodes. The results show that the method produces high‐quality solutions in a fairly short time.

Este artículo presenta un problema de localización de captura de flujo jerárquico (hierarchical flow capturing location problem‐HFCLP) y propone un método heurístico eficiente de tipo Lagrange (lagrangian). En su formulación original el HFLCP tiene como objetivo localizar un número determinado de instalaciones en una red con el fin de maximizar el flujo total que puede ser atendido por las instalaciones existentes a lo largo de rutas preestablecidas, como en el caso por ejemplo, de los desplazamientos diarios del lugar de residencia al de trabajo. Los autores amplían el modelo original para permitir que el tomador de decisiones seleccione el tamaño de las instalaciones entre “m” alternativas. Se asume que las instalaciones más grandes son más atractivas que las más pequeñas y, por lo tanto, pueden atraer a más clientes, pero a la vez, son también más costosas de construir. Los clientes se desvían de su ruta preestablecida para acceder al servicio de una instalación cuando el tamaño de la instalación es lo suficientemente grande. El grado de desviación de las rutas se mide por la distancia adicional que los clientes viajan para acceder a las instalaciones. La distancia de desviación aceptable se hace más grande en relación al tamaño de la instalación. En este artículo se presenta un nuevo modelo para el HFLCP en el que el número de las instalaciones de cada tamaño y su ubicación son determinadas simultáneamente con el fin de capturar la mayor cantidad de flujo dentro del presupuesto total disponible para la localización de todas las instalaciones. Los autores presentan una formulación de programación entera (integer programming) del HFCLP e implementan un método que relaja la solución lagrangiana. El algoritmo propuesto es evaluado utilizando redes viales con 300 y 500 nodos. Los resultados muestran que el nuevo método produce soluciones de alta calidad y en tiempos de computación relativamente cortos.

(HFCLP)(FCLP)300500

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1538-4632.2011.00837.x

Publication date: January 1, 2012

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more