Skip to main content

Exploring Spatial Patterns Using an Expanded Spatial Autocorrelation Framework

The full text article is not available.

At present, only title information is available on for this article. This is due to copyright restrictions.


Spatial autocorrelation (SA) is regarded as an important dimension of spatial pattern. SA measures usually consist of two components: measuring the similarity of attribute values and defining the spatial relationships among observations. The latter component is often represented by a spatial weights matrix that predefines spatial relationship between observations in most measures. Therefore, SA measures, in essence, are measures of attribute similarity, conditioned by spatial relationship. Another dimension of spatial pattern can be explored by controlling observations to be compared based upon the degree of attribute similarity. The resulting measures are spatial proximity measures of observations, meeting predefined attribute similarity criteria. Proposed measures reflect degrees of clustering or dispersion for observations meeting certain levels of attribute similarity. An existing spatial autocorrelation framework is expanded to a general framework to evaluate spatial patterns and can accommodate the proposed approach measuring proximity. Analogous to the concept of variogram, clustergram is proposed to show the levels of spatial clustering over a range of attribute similarity, or attribute lags. Specific measures based on the proposed approach are formulated and applied to a hypothetical landscape and an empirical example, showing that these new measures capture spatial pattern information not reflected by traditional spatial autocorrelation measures.

Document Type: Research Article


Affiliations: Department of Geography & Geoinformation Science, George Mason University, Fairfax, VA 22030

Publication date: 2011-07-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more