Skip to main content

A New Perspective about Moran's Coefficient: Spatial Autocorrelation as a Linear Regression Problem. Moran

The full text article is not available.

At present, only title information is available on for this article. This is due to copyright restrictions.


The computation of Moran's index of spatial autocorrelation requires the definition of a spatial weighting matrix. The eigendecomposition of this doubly centered matrix (i.e., one that forces the sums of all rows and columns to equal zero) has interesting properties that have been exploited in various contexts: distribution properties of the Moran coefficient (MC), spatial filtering in linear models, generalized linear models, and multivariate analysis. In this article, this eigendecomposition is used to propose a new view of MC based on its interpretation in the simple context of linear regression. I use this interpretation to demonstrate the different properties of MC and also the inefficiency of this index in some situations involving simultaneous positive and negative spatial autocorrelation. I propose some new statistics and procedures for testing spatial autocorrelation, and conduct a simulation study to evaluate these new approaches.

Language: English

Document Type: Research Article


Affiliations: Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France

Publication date: 2011-04-01

  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more