Skip to main content

A Structural Equation Approach to Models with Spatial Dependence

Buy Article:

$51.00 plus tax (Refund Policy)

We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it possible to obtain a closer correspondence between theory and empirics, to explicitly account for measurement errors, and to reduce multicollinearity. We extend the standard SEM maximum likelihood estimator to allow for spatial dependence and propose easily accessible SEM software like LISREL 8 and Mx. We present an illustration based on Anselin's Columbus, OH, crime data set. Furthermore, we combine the spatial lag model with the latent multiple-indicators–multiple-causes model and discuss estimation of this latent spatial lag model. We present an illustration based on the Anselin crime data set again.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands,

Publication date: 2008-04-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more