If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Interactive effects of water table and precipitation on net CO2 assimilation of three co-occurring Sphagnum mosses differing in distribution above the water table

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Abstract

Sphagnum cuspidatum, S. magellanicum and S. rubellum are three co-occurring peat mosses, which naturally have a different distribution along the microtopographical gradient of the surface of peatlands. We set out an experiment to assess the interactive effects of water table (low: −10 cm and high: −1 cm) and precipitation (present or absent) on the CO2 assimilation and evaporation of these species over a 23-day period. Additionally, we measured which sections of the moss layer were responsible for light absorption and bulk carbon uptake. Thereafter, we investigated how water content affected carbon uptake by the mosses. Our results show that at high water table, CO2 assimilation of all species gradually increased over time, irrespective of the precipitation. At low water table, net CO2 assimilation of all species declined over time, with the earliest onset and highest rate of decline for S. cuspidatum. Precipitation compensated for reduced water tables and positively affected the carbon uptake of all species. Almost all light absorption occurred in the first centimeter of the Sphagnum vegetation and so did net CO2 assimilation. CO2 assimilation rate showed species-specific relationships with capitulum water content, with narrow but contrasting optima for S. cuspidatum and S. rubellum. Assimilation by S. magellanicum was constant at a relatively low rate over a broad range of capitulum water contents. Our study indicates that prolonged drought may alter the competitive balance between species, favoring hummock species over hollow species. Moreover, this study shows that precipitation is at least equally important as water table drawdown and should be taken into account in predictions about the fate of peatlands with respect to climate change.

Keywords: CO2 assimilation; Sphagnum; climate change; desiccation; peatlands; photosynthesis; precipitation; raised bogs; recovery; water table

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2486.2008.01724.x

Affiliations: 1: Nature Conservation and Plant Ecology Group, Department of Environmental Sciences, Wageningen University, PO Box 47, NL-6700 AA Wageningen, The Netherlands, 2: Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, PO Box 80084, Utrecht, The Netherlands

Publication date: March 1, 2009

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more