Skip to main content

Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Abstract

Meta-analysis techniques were used to examine the effect of elevated atmospheric carbon dioxide [CO2] on the protein concentrations of major food crops, incorporating 228 experimental observations on barley, rice, wheat, soybean and potato. Each crop had lower protein concentrations when grown at elevated (540–958  mol mol−1) compared with ambient (315–400  mol mol−1) CO2. For wheat, barley and rice, the reduction in grain protein concentration was ∼10–15% of the value at ambient CO2. For potato, the reduction in tuber protein concentration was 14%. For soybean, there was a much smaller, although statistically significant reduction of protein concentration of 1.4%. The magnitude of the CO2 effect on wheat grains was smaller under high soil N conditions than under low soil N. Protein concentrations in potato tubers were reduced more for plants grown at high than at low concentrations of ozone. For soybean, the ozone effect was the reverse, as elevated CO2 increased the protein concentration of soybean grown at high ozone concentrations. The magnitude of the CO2 effect also varied depending on experimental methodology. For both wheat and soybean, studies performed in open-top chambers produced a larger CO2 effect than those performed using other types of experimental facilities. There was also indication of a possible pot artifact as, for both wheat and soybean, studies performed in open-top chambers showed a significantly greater CO2 effect when plants were rooted in pots rather than in the ground. Studies on wheat also showed a greater CO2 effect when protein concentration was measured in whole grains rather than flour. While the magnitude of the effect of elevated CO2 varied depending on the experimental procedures, a reduction in protein concentration was consistently found for most crops. These findings suggest that the increasing CO2 concentrations of the 21st century are likely to decrease the protein concentration of many human plant foods.

Keywords: carbon dioxide; crops; food; meta-analysis; nitrogen; nutrient; nutrition; protein

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2486.2007.01511.x

Affiliations: 1: Biology Department, Southwestern University, 1001 East University Avenue, Georgetown, TX 78626, USA, 2: Environmental Studies Program, Southwestern University, 1001 East University Avenue, Georgetown, TX 78626, USA

Publication date: March 1, 2008

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more