Skip to main content

Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Abstract

We reviewed the effects of elevated ozone (O3), alone and in combination with elevated carbon dioxide (CO2) on primary and secondary metabolites of trees and performance of insect herbivores by means of meta-analysis. Our database consisted of 63 studies conducted on 22 species of trees and published between 1990 and 2005. Ozone alone had no overall effect on concentrations of carbohydrates or nutrients, whereas in combination with CO2, elevated O3 reduced nutrient concentrations and increased carbohydrate concentrations. In contrast to primary metabolites, concentrations of phenolics and terpenes were significantly increased by 16% and 8%, respectively, in response to elevated O3. Effects of ozone in combination with elevated CO2 were weaker than those of ozone alone on phenolics, but stronger than those of ozone alone on terpenes. The magnitude of secondary metabolite responses depended on the type of ozone exposure facility and increased in the following order: indoor growth chamber 3 than gymnosperms, as shifts in concentrations of carbohydrate and phenolics were observed in the former, but not in the latter. Elevated O3 had positive effects on some indices of insect performance: pupal mass increased and larval development time shortened, but these effects were counteracted by elevated CO2. Therefore, despite the observed increase in secondary metabolites, elevated O3 tends to increase tree foliage quality for herbivores, but elevated CO2 may alleviate these effects. Our meta-analysis clearly demonstrated that effects of elevated O3 alone on leaf chemistry and some indices of insect performance differed from those of O3+CO2, and therefore, it is important to study effects of several factors of global climate change simultaneously.

Keywords: carbohydrates; elevated CO2; elevated O3; insect performance; meta-analysis; nitrogen; phenolics; plant–insect interaction; terpenes; trees

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2486.2006.01284.x

Affiliations: 1: Section of Ecology, Department of Biology, University of Turku, FIN-20014 Turku, Finland, 2: School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK, 3: Department of Biology, University of Joensuu, PO Box 111, FI-80101 Joensuu, Finland

Publication date: January 1, 2007

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more