Skip to main content

A continuum damage model applied to high-temperature fatigue lifetime prediction of a martensitic tool steel

Buy Article:

$51.00 plus tax (Refund Policy)



High-temperature operational conditions of hot work tool steels induce several thermomechanical loads. Depending on the processes, (i.e. forging, die casting or extrusion), stress, strain, strain rate and temperature levels applied on the material are nevertheless very different. Thus, lifetime prediction models need to be able to take into account a broad range of working conditions. In this paper, a non-isothermal continuum damage model is identified for a widely used hot work tool steel AISI H11 (X38CrMoV5) with a nominal hardness of 47 HRc. This investigation is based on an extensive high-temperature, low-cycle fatigue database performed under strain rate controlled conditions with and without dwell times in the temperature range 300–600°C . As analysis of experimental results does not reveal significant time-dependent damage mechanisms, only a fatigue damage component was activated in the model formulation. After normalization, all fatigue results are defined on a master Woehler curve defined by a nonlinear damage model, which allows the parameter identification. Last, a validation stage of the model is performed from thermomechanical fatigue tests.

Keywords: Woehler curve; continuum damage mechanics; fatigue life prediction; high-temperature fatigue; tempered martensitic steels

Document Type: Research Article


Affiliations: Research Centre on Tools, Materials and Processes (CROMeP), Ecole des Mines d'Albi, Carmaux, Campus Jarlard, 81013 ALBI cedex 09, France

Publication date: November 1, 2005


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more