Skip to main content

OxyR regulated the expression of two major catalases, KatA and KatB, along with peroxiredoxin, AhpC in Pseudomonas putida

Buy Article:

$43.00 plus tax (Refund Policy)


OxyR is known to activate/repress the expression of the oxyR regulon, which consists of several genes, which play important antioxidant role in Escherichia coli. To elucidate the role of OxyR in Pseudomonas putida KT2442, the oxyR1 mutation that caused the upregulation of ahpC in a toluene-resistant variant strain was introduced, because no null mutants in oxyR were isolated. This mutation was shown to cause the accumulation of a catalase (KatA) along with AhpC throughout the growth, and of a RpoS-dependent catalase/peroxidase (KatB) in the stationary phase. Following the identification of the transcription start site of two catalase genes, sequences similar to those involved in the proposed OxyR binding for E. coli were found upstream from each of the promoter regions of katA and katB, as well as ahpC. Purified OxyR was shown to bind to these sequences, under both reduced and oxidized states. Moreover, the oxyR1 mutation increased the transcription levels of these genes. These results are consistent with the conclusion, distinct from those observed in an opportunistic pathogen Pseudomonas aeruginosa, that OxyR controlled expression of all the principal peroxide-degrading enzymes in P. putida. The mutation did not cause any notable changes in the transcriptional levels of several antioxidant genes, including those of glutathione reductase, glutaredoxins and thioredoxins, which would involve maintenance of the cellular thiol-disulfide balance, suggesting that the transcriptional regulation of these antioxidant genes should be different from that of katA, katB and ahpC in P. putida.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2006-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more