Skip to main content

Free Content Loss of kinase activity in Mycobacterium tuberculosis multidomain protein Rv1364c

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

The alternative sigma factors are regulated by a phosphorylation-mediated signal transduction cascade involving anti-sigma factors and anti-anti-sigma factors. The proteins regulating Mycobacterium tuberculosis sigma factor F (SigF), anti-SigF and anti-anti-SigF have been identified, but the factors catalyzing phosphorylation–dephosphorylation have not been well established. We identified a distinct pathogenic species-specific multidomain protein, Rv1364c, in which the components of the entire signal transduction cascade for SigF regulation appear to be encoded in a single polypeptide. Sequence analysis of M. tuberculosis Rv1364c resulted in the prediction of various domains, namely a phosphatase (RsbU) domain, an anti-SigF (RsbW) domain, and an anti-anti-SigF (RsbV) domain. We report that the RsbU domain of Rv1364c bears all the conserved features of the PP2C-type serine/threonine phosphatase family, whereas its RsbW domain has certain substitutions and deletions in regions important for ATP binding. Another anti-SigF protein in M. tuberculosis, UsfX (Rv3287c), shows even more unfavorable substitutions in the kinase domain. Biochemical assay with the purified RsbW domain of Rv1364c and UsfX showed the loss of ability of autophosphorylation and phosphotransfer to cognate anti-anti-SigF proteins or artificial substrates. Both the Rv1364c RsbW domain and UsfX protein display very weak binding with fluorescent ATP analogs, despite showing functional interactions characteristic of anti-SigF proteins. In view of conservation of specific interactions with cognate sigma and anti-anti-sigma factor, the loss of kinase activity of Rv1364c and UsfX appears to form a missing link in the phosphorylation-dependent interaction involved in SigF regulation in Mycobacterium.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Mycobacterium; RsbW; Rv1364c; SigF; kinase

Document Type: Research Article

Affiliations: 1:  Institute of Genomics and Integrative Biology (CSIR), Delhi, India 2:  Dr B. R. Ambedkar Center for Biomedical Research, University of Delhi, India

Publication date: 2008-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more