Skip to main content

Free Content Analyzing the catalytic role of Asp97 in the methionine aminopeptidase from Escherichia coli

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


An active site aspartate residue, Asp97, in the methionine aminopeptidase (MetAPs) from Escherichia coli (EcMetAP-I) was mutated to alanine, glutamate, and asparagine. Asp97 is the lone carboxylate residue bound to the crystallographically determined second metal-binding site in EcMetAP-I. These mutant EcMetAP-I enzymes have been kinetically and spectroscopically characterized. Inductively coupled plasma–atomic emission spectroscopy analysis revealed that 1.0 ± 0.1 equivalents of cobalt were associated with each of the Asp97-mutated EcMetAP-Is. The effect on activity after altering Asp97 to alanine, glutamate or asparagine is, in general, due to a ∼ 9000-fold decrease in kca towards Met-Gly-Met-Met as compared to the wild-type enzyme. The Co(II) dd spectra for wild-type, D97E and D97A EcMetAP-I exhibited very little difference in form, in each case, between the monocobalt(II) and dicobalt(II) EcMetAP-I, and only a doubling of intensity was observed upon addition of a second Co(II) ion. In contrast, the electronic absorption spectra of [Co_(D97N EcMetAP-I)] and [CoCo(D97N EcMetAP-I)] were distinct, as were the EPR spectra. On the basis of the observed molar absorptivities, the Co(II) ions binding to the D97E, D97A and D97N EcMetAP-I active sites are pentacoordinate. Combination of these data suggests that mutating the only nonbridging ligand in the second divalent metal-binding site in MetAPs to an alanine, which effectively removes the ability of the enzyme to form a dinuclear site, provides a MetAP enzyme that retains catalytic activity, albeit at extremely low levels. Although mononuclear MetAPs are active, the physiologically relevant form of the enzyme is probably dinuclear, given that the majority of the data reported to date are consistent with weak cooperative binding.

Keywords: EPR; kinetics; mechanism; methionine aminopeptidases; mutants

Document Type: Research Article


Affiliations: 1:  Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA 2:  Department of Biophysics, National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, WI, USA

Publication date: December 1, 2008


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more