Skip to main content

Dothistromin biosynthesis genes allow inter‐ and intraspecific differentiation between Dothistroma pine needle blight fungi

Buy Article:

$43.00 plus tax (Refund Policy)


Dothistroma septosporum and D. pini are the causal agents of Dothistroma needle blight (DNB) of Pinus spp. in natural forests and plantations. The main aim of this study was to develop molecular diagnostic procedures to distinguish between isolates within D. septosporum, for use in biosecurity and forest health surveillance programmes. This is of particular interest for New Zealand where the population is clonal and introduction of a new isolate of the opposite mating type could have serious consequences. Areas of diversity in the dothistromin toxin gene clusters were identified in D. septosporum (51 isolates) and D. pini (6 isolates) and used as the basis of two types of diagnostic tests. PCR‐restriction fragment length polymorphism (RFLP) of part of the dothistromin polyketide synthase gene (pksA) enabled distinction between two groups of D. septosporum isolates (A and B) as well as distinguishing D. septosporum and D. pini. The intergenic region between the epoA and avfA genes allowed further resolution between some of the A group isolates in RFLP assays. These regions were analysed further to develop a rapid real‐time PCR method for diagnosis by high‐resolution melting (HRM) curve analysis. The pksA gene enabled rapid discrimination between D. septosporum and D. pini, whilst the epoA–avfA region distinguished the New Zealand isolate from most other isolates in the collection, including some isolates from DNB epidemics in Canada and Europe. Although this study is focused on differences between the New Zealand isolate and other global isolates, this type of diagnostic system could be used more generally for high‐throughput screening of D. septosporum isolates.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: 1: Institute of Molecular Biosciences, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand 2: Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden

Publication date: 2011-10-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more