Skip to main content

Free Content Rapid patterning in 2-D cultures of Dictyostelium cells and its relationship to zonal differentiation

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


Rapid patterning has been observed in confined 2-D cultures of Dictyostelium discoideum Ax-2 cells as an outer dark zone and a inner light zone. The width of outer zone was usually ~100 μm, irrespective of the size of cell masses under atmospheric conditions. The width of the outer zone, however, changed depending on external O2 concentrations and reached up to 250 μm at 100% O2. A clear regional difference in tetramethyl rhodamine methyl ester (TMRM) staining was noticed between the outer zone and the inner zone: the inner zone was more strongly stained with TMRM than the outer zone, which faced the air. Using inhibitors of oxidative phosphorylation (dinitrophenol (DNP) or NaN3) and a specific inhibitor of CN-resistant respiration (benzohydroxamic acid (BHAM)), it has been demonstrated that the outer zone is basically formed by the O2 threshold for oxidative phosphorylation, while the inner cells mainly perform cyanide-resistant respiration. When cells around the early mound stage (just before prestalk and prespore differentiation) were cultured as 2-D cell masses, ecmA-expressing cells (pstA cells), ecmB-expressing cells (pstB cells) and D19-expressing cells (prespore; psp cells), arose in a position-dependent manner in the outer zone. In the inner zone, cell motility seemed to be markedly impaired and neither prestalk nor prespore differentiation occurred. In addition, once-differentiated prespore cells were found to dedifferentiate rapidly in the inner zone. The reason for dedifferentiation as well as for failure of cells to differentiate in the inner zone is discussed with reference to O2 radicals.

Keywords: 2-D cell mass; Dictyostelium; dedifferentiation; differentiation; rapid patterning; respiration

Document Type: Research Article


Affiliations: 1: Biological Institute, Graduate School of Science, Tohoku University, Aoba, Sendai 980-8578, 2: Graduate School of Information Sciences and 3: Research Institute of Electrical Communication, Tohoku University, Katahira, Sendai 980-8577, Japan.

Publication date: December 1, 2000


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more