Skip to main content

Using null model analysis of species co-occurrences to deconstruct biodiversity patterns and select indicator species

Buy Article:

$43.00 plus tax (Refund Policy)

Abstract Aim 

Using total species richness to characterize biodiversity may mask multiple response patterns of species. We propose a null model analysis of species co-occurrence-based classification to identify sets of species that may have similar (within-groups) and distinct (between groups) response patterns to their environment. The classification should also provide an explicit framework for selecting indicator species with characteristic co-occurrence patterns to predict overall species richness. Location 

Côte-Nord, Québec, Canada. Methods 

We combined null-model of species co-occurrence and cluster analysis to identify species groups within diverse assemblages of ground-dwelling and flying beetles of stands in a boreal forest mosaic; we then examined their co-occurrence and response patterns to habitat characteristics. Best subset regressions were used to select indicator species of richness within each group, from which indicators of total species richness were selected. Results 

The identified species groups appeared to display contrasting co-occurrence and response patterns to at least one of the stand-level habitat characteristics. Among flying beetles, for example, richness increased with stand-level heterogeneity for two groups and decreased for two other groups, but the relationship was non-significant for the total richness. We identified 28 indicator species that explained > 80% (validated by bootstrap analysis) of the variation in total species richness. Predictive performance of indicators was higher than when their co-occurrence were reshuffled, even under a highly constrained null model, indicating that co-occurrence patterns contributed to their predictive performance. Main conclusions 

Co-occurrence-based classification appears as a promising and effective tool for deconstructing biodiversity into species groups which reflect their ecological commonalities and differences, thus reducing the risk of making faulty inferences about the causes underlying overall diversity patterns. The method provides an explicit framework for selecting indicator species representing different species groups that may reflect the multiple responses of species co-occurring with them. Indicator species can be effective for predicting overall species richness.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Biodiversity deconstruction; boreal forest; co-occurrence; indicator species; null model analysis

Document Type: Research Article

Affiliations: 1: NSERC–Université Laval industrial research chair in silviculture and wildlife, Department of Biology, Université Laval, Pavillon Alexandre-Vachon, QC, G1V 0A6 2: Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn. Sainte-Foy, QC, G1V 4C7 3: Département des sciences biologiques, Université du Québec à Montréal (UQÀM), CP 8888, Succ. Centre Ville, Montréal, QC, H3C 3P8 4: Département des sciences du bois et de la forêt, Université Laval, Sainte-Foy, QC, G1V 0A6, Canada

Publication date: 2009-11-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more