Skip to main content

The effect of overstorey proteas on plant species richness in South African mountain fynbos: BIODIVERSITY RESEARCH

Buy Article:

$51.00 plus tax (Refund Policy)



Two South African mountain fynbos sites, similar in drainage, elevation, slope angle, slope aspect and soil type but with differing fire histories, were studied to measure how the effect of high densities of overstorey proteas in one fire cycle affects the α-diversity levels of the plant community in the following fire-cycle, how their repeated absence due to several short fire-cycles affects their species richness and finally, at what spatial scale such patterns are most appropriately measured. High prefire canopy cover percentages and densities of overstorey proteas increase the postfire α-diversity of understorey species. In addition, the increase in species richness observed occurred for all higher plant life history types present. At sites where one or more short fire cycles resulted in the repeated absence of overstorey proteas, the number of plant species present in the understorey was lower than at a site where overstorey proteas persisted. These results are dependent on the spatial scale at which the α-diversity of understorey species is measured. At small quadrat sizes (< 5 m2), overstorey proteas decrease the number of understorey species present, while at larger quadrat sizes (100 m2) higher species richness is observed. The contradiction in conclusions when α-diversity is measured at different spatial scales can be attributed to the patchiness of fynbos communities. Overstorey proteas play an important role in maintaining the patchiness component of fynbos communities by diminishing the effect of understorey resprouting species, making available regeneration niches for the maintenance of plant species richness. Where small quadrats are used, the effect of patchiness on the dynamics of the mountain fynbos community is lost. Thus, it is the fire history prior to the last fire and how it affects overstorey proteas that is important in the determination of α-diversity levels in mountain fynbos plant communities.

Keywords: Fire regime; mountain fynbos; patchiness; protea overstorey; species richness

Document Type: Original Article


Affiliations: Department of Botany, University of Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa

Publication date: September 1, 1999

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more