Skip to main content

Evolutionary significance of fecundity reduction in threespine stickleback infected by the diphyllobothriidean cestode Schistocephalus solidus

Buy Article:

$43.00 plus tax (Refund Policy)

Parasites may cause fecundity reduction in their hosts via life-history strategies involving simple nutrient theft or manipulation of host energy allocation. Simple theft of nutrients incidentally reduces host energy allocation to reproduction, whereas manipulation is a parasite-driven diversion of energy away from host reproduction. We aimed to determine whether the diphyllobothriidean cestode parasite Schistocephalus solidus causes loss of fecundity in the threespine stickleback fish (Gasterosteus aculeatus) through simple nutrient theft or the manipulation of host energy allocation. In one stickleback population (Walby Lake, Matanuska-Susitna Valley, Alaska), there was no difference in the sizes and ages of infected and uninfected reproducing females. Lightly- and heavily-infected females produced clutches of eggs, but increasingly smaller percentages of infected females produced clutches as the parasite-to-host biomass ratio (PI) increased. Infected, clutch-bearing sticklebacks showed reductions in clutch size, egg mass, and clutch mass, which were related to increases in PI and reflected a reduction in reproductive parameters as growth in parasite mass occurs. The findings obtained for this population are consistent with the hypothesis of simple nutrient theft; however, populations of S. solidus in other regions may manipulate host energy allocation. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 835–846.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Gasterosteus aculeatus; castration; manipulation; nutrient theft; parasitism; side effect

Document Type: Research Article

Affiliations: 1: Department of Biology, Clark University, Worcester, MA 01610, USA 2: Department of Ecology and Evolutionary Biology, 400 Lindy Boggs Center, Tulane University, New Orleans, LA 70118, USA

Publication date: 2010-08-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more