Skip to main content

Coevolution of a marine gastropod predator and its dangerous bivalve prey

Buy Article:

$51.00 plus tax (Refund Policy)


The fossil record of the interaction between the predatory whelk Sinistrofulgur and its dangerous hard-shelled bivalve prey Mercenaria in the Plio-Pleistocene of Florida was examined to evaluate the hypothesis that coevolution was a major driving force shaping the species interaction. Whelks use their shell lip to chip open the shell of their prey, often resulting in breakage to their own shells, as well as to their prey. Mercenaria evolved a larger shell in response to an intensifying level of whelk predation. Reciprocally, an increase in attack success (ratio of successful to unsuccessful attacks) and degree of stereotypy of attack position by the predator suggest reciprocal adaptation by Sinistrofulgur to increase efficiency in exploiting hard-shelled prey. A decrease in prey effectiveness (ratio of unsuccessful to total whelk predation attempts) and an increase in the minimum boundary of a size refuge from whelk predation for Mercenaria may indicate that predator adaptation has outpaced prey antipredatory adaptation. Evolutionary size increase in Sinistrofulgur most likely occurred in response to prey adaptation to decrease the likelihood of feeding-induced shell breakage and unsuccessful predation when encounters with damage-inducing prey occur, coupled with (or reinforced by) an evolutionary response to the whelk's own predators. Predator adaptation to Mercenaria best explains temporal changes in whelk behaviour to decrease performance loss (shell breakage) associated with feeding on hard-shelled prey; this behavioural change limits attacks on prey to when the whelk's shell lip is thickest and most resistant to breakage. Despite evidence of reciprocal adaptation between predator and prey, the contribution of Mercenaria to Sinistrofulgur evolution is likely only a component of the predator's response to dangerous bivalve prey. This study highlights the importance of understanding the interactions among several species in order to provide the appropriate context to test evolutionary hypotheses about any specific pair of species. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80, 409–436.

Keywords: Gastropoda; arms race; busyconine; escalation; predator–prey interaction; shell repair

Document Type: Research Article


Publication date: 2003-11-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more