Skip to main content

Gene flow and melanism in garter snakes revisited: a comparison of molecular markers and island vs. coalescent models

Buy Article:

$43.00 plus tax (Refund Policy)

Within populations, the stochastic effect of genetic drift and deterministic effect of natural selection are potentially weakened or altered by gene flow among populations. The influence of gene flow on Lake Erie populations of the common garter snake has been of particular interest because of a discontinuous colour pattern polymorphism (striped vs. melanistic) that is a target of natural selection. We reassessed the relative contributions of gene flow and genetic drift using genetic data and population size estimates. We compared all combinations of two marker systems and two analytical approaches to the estimation of gene flow rates: allozymes (data previously published), microsatellite DNA (new data), the island model (FST-based approach), and a coalescence-based approach. For the coalescence approach, mutation rates and sampling effects were also investigated. While the two markers produced similar results, gene flow based on FST was considerably higher (Nm > 4) than that from the coalescence-based method (Nm < 1). Estimates of gene flow are likely to be inflated by lack of migration-drift equilibrium and changing population size. Potentially low rates of gene flow (Nm < 1), small population size at some sites, and positive correlations of number of microsatellite DNA alleles and island size and between M, mean ratio of number of alleles to range in allele size, and island size suggest that in addition to selection, random genetic drift may influence colour pattern frequencies. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 79, 389–399.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: FST; Lake Erie; Thamnophis sirtalis; allozymes; coalescent theory; genetic drift; microsatellite DNA; migration; mutation; selection

Document Type: Research Article

Affiliations: Northern Illinois University, Department of Biological Sciences, DeKalb, IL 60115, USA

Publication date: 2003-07-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more