Skip to main content

Spatial predictability and resource specialization of bees (Hymenoptera: Apoidea) at a superabundant, widespread resource

Buy Article:

$43.00 plus tax (Refund Policy)

For reciprocal specialization (coevolution) to occur among floral visitors and their host plants the interactions must be temporally and spatially persistent. However, studies repeatedly have shown that species composition and relative abundance of floral visitors vary dramatically at all spatial and temporal scales. We test the hypothesis that, on average, pollen specialist bee species occur more predictably at their floral hosts than pollen generalist bee species. Taxonomic floral specialization reaches its extreme among species of solitary, pollen‐collecting bees, yet few studies have considered how pollen specialization by floral visitors influences their spatial constancy. We test this hypothesis using an unusually diverse bee guild that visits creosote bush (Larrea tridentatd), the most widespread, dominant plant of the warm deserts of North America. Twenty‐two strict pollen specialist and 80 + generalist bee species visit Larrea for its floral resources. The sites we sampled were separated by 0.5 to > 1450 km, and spanned three distinct deserts and four vegetation zones. We found that species of Larrea pollen specialist bees occurred at more sites and tended to be more abundant than generalists. Surprisingly, spatial turnover was high for both pollen specialist and generalist bee species at all distances, and species composition of samples from sites 1–5 km apart varied as much as repeat samples made at single sites. Nevertheless, the pattern of bee species turnover was not haphazard. As distance among sites increased faunal similarity of sites decreased. Faunal similarities among sites within 250 km of each other were generally greater than if randomly distributed over all sites (the null model). No single ecological category of species (widespread, localized, Larrea pollen specialist, floral generalist) accounted for this spatial predictability. Evidently, concordant local distribution patterns of many ecologically diverse species contribute to the non‐random spatial pattern. The ecological dominance of creosote bush does not confer obvious ecological advantages to its specialist floral visitors. Spatial turnover is comparable to that found for bee guilds from other biogeographic regions of the world and is not therefore limited to those bee species that inhabit highly seasonal climates, such as deserts. Philopatry and differences in bloom predictability among sites are probably more important causes for spatial turnover of bee species than are interspecific competition for nest sites or floral resources.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Original Article

Affiliations: Department of Entomology, 301 Funchess Hall, Auburn University, Auburn, AL 36849-5413, U.S.A.

Publication date: 1999-05-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more