Sequence‐dependent effects of cryoprotectants on the active sites of the human ABO(H) blood group A and B glycosyltransferases

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

The human ABO(H) A and B blood group glycosyltransferases GTA and GTB differ by only four amino acids, yet this small dissimilarity is responsible for significant differences in biosynthesis, kinetics and structure. Like other glycosyltransferases, these two enzymes have been shown to recognize substrates through dramatic conformational changes in mobile polypeptide loops surrounding the active site. Structures of GTA, GTB and several chimeras determined by single‐crystal X‐ray diffraction demonstrate a range of susceptibility to the choice of cryoprotectant, in which the mobile polypeptide loops can be induced by glycerol to form the ordered closed conformation associated with substrate recognition and by MPD [hexylene glycol, (±)‐2‐methyl‐2,4‐pentanediol] to hinder binding of substrate in the active site owing to chelation of the Mn2+ cofactor and thereby adopt the disordered open state. Glycerol is often avoided as a cryoprotectant when determining the structures of carbohydrate‐active enzymes as it may act as a competitive inhibitor for monosaccharide ligands. Here, it is shown that the use of glycerol as a cryoprotectant can additionally induce significant changes in secondary structure, a phenomenon that could apply to any class of protein.

Document Type: Research Article

DOI: http://dx.doi.org/10.1107/S0907444912001801

Publication date: March 1, 2012

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more