Skip to main content

Structure of the molybdenum-cofactor biosynthesis protein MoaB of Escherichia coli

Buy Article:

$51.00 plus tax (Refund Policy)


The moaABC operon of Escherichia coli is involved in early steps of the biosynthesis of the molybdenum-binding cofactor molybdopterin, but the precise functions of the cognate proteins are not known. The crystal structure of the MoaB protein from E. coli was determined by multiple anomalous dispersion at 2.1 ├ů resolution and refined to an R factor of 20.4% (Rfree = 25.0%). The protein is a 32-symmetric hexamer, with the monomers consisting of a central -sheet flanked by helices on both sides. The overall fold of the monomer is similar to those of the MogA protein of E. coli, the G-domains of rat and human gephyrin and the G-domains of Cnx1 protein from A.┬áthaliana, all of which are involved in the insertion of an unknown molybdenum species into molybdopterin to form the molybdenum cofactor. Furthermore, the MoaB protein shows significant sequence similarity to the cinnamon protein from Drosophila melanogaster. In addition to other functions, all these proteins are involved in the biosynthesis of the molybdenum cofactor and have been shown to bind molybdopterin. The close structural homology to MogA and the gephyrin and Cnx1 domains suggests that MoaB may bind a hitherto unidentified pterin compound, possibly an intermediate in molybdopterin biosynthesis.

Keywords: molybdenum cofactor; molydopterin; multiwavelength anomalous dispersion (MAD)

Document Type: Research Article


Publication date: June 1, 2004


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more