Skip to main content

Structural chemistry of new lithium bis(oxalato)­borate solvates

Buy Article:

$43.00 plus tax (Refund Policy)

Recently lithium bis(oxalato)borate, LiB(C2O4)2, has been proposed as an alternative lithium salt for the electrolyte in rechargeable batteries that do not contain explosive perchlorate, reactive fluoride or toxic arsenic. This lithium salt crystallizes in the form of solvates from such solvents as water, acetonitrile, acetone, dimethoxyethane, 1,3-dioxolane and ethylene carbonate. Their crystal structures were determined in order to explore the crystal chemistry of this lithium salt. It was found that most of the solvents consist of a lithium bis(oxalato)borate dimer in which the ligand acts as both a chelating and a bridging agent. Lithium has octahedral coordination that typically includes one or, less commonly, two solvent molecules. An exception to this rule is the ethylene carbonate solvate where the lithium is tetrahedrally surrounded exclusively by the solvent and bis(oxalato)borate plays the role of counter-ion only. The ethylene carbonate solvates were also studied for LiPF6 and LiAsF6 salts and they have similar structures to the bis(oxalato)borate tetrahedral complexes.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: bis(oxalato)borate; solvates; electrolyte; lithium salt

Document Type: Research Article

Publication date: 2004-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more