Skip to main content

Training response of mitochondrial transcription factors in human skeletal muscle

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Abstract Aim: 

Mitochondrial function is essential for physical performance and health. Aerobic fitness is positively associated with mitochondrial (mt) biogenesis in muscle cells through partly unknown regulatory mechanisms. The present study aimed to investigate the influence of exercise and training status on key mt transcription factors in relation to oxidative capacity in human skeletal muscle. Methods: 

The basal mRNA and protein levels of mitochondrial transcription factor A (TFAM), mitochondrial transcription factors B1 (TFB1M) or B2 (TFB2M), and mRNA levels of mitochondrial transcription termination factor (mTERF), were measured in a cross-sectional study with elite athletes (EA) and moderately active (MA) and the basal mRNA levels of these factors were measured during a 10-day endurance training programme with (R-leg) and without (NR-leg) restricted blood flow to the working leg. Results: 

TFAM protein expression was significantly higher in the EA than in the MA, while protein levels of TFB1M and TFB2M were not different between the groups. There was no difference between EA and MA, or any effect with training on TFAM mRNA levels. However, the mRNA levels of TFB1M, TFB2M and mTERF were higher in EA compared with MA. For TFB1M and TFB2M, the mRNA expression was increased in the R-leg after 10 days of training, but not in the NR-leg. mTERF mRNA levels were higher in EA compared with MA. Conclusion: 

This study further establishes that TFAM protein levels are higher in conditions with enhanced oxidative capacity. The mRNA levels of TFB1M and TFB2M are influenced by endurance training, possibly suggesting a role for these factors in the regulation of exercise-induced mitochondrial biogenesis.

Keywords: exercise; gene expression; mitochondrial biogenesis; regulation

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1748-1716.2009.02030.x

Affiliations: 1:  Division of Clinical Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden 2:  Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden

Publication date: January 1, 2010

bsc/aps/2010/00000198/00000001/art00006
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more