Skip to main content

The role of caveolin-1 in cardiovascular regulation

Buy Article:

$43.00 plus tax (Refund Policy)

Abstract

Caveolae are omega-shaped membrane invaginations present in essentially all cell types in the cardiovascular system, and numerous functions have been ascribed to these structures. Caveolae formation depends on caveolins, cholesterol and polymerase I and transcript release factor-Cavin (PTRF-Cavin). The current review summarizes and critically discusses the cardiovascular phenotypes reported in caveolin-1-deficient mice. Major changes in the structure and function of heart, lung and blood vessels have been documented, suggesting that caveolae play a critical role at the interface between blood and surrounding tissue. According to an emerging paradigm, many of these changes are secondary to uncoupling of endothelial nitric oxide synthase. Thus, nitric oxide synthase not only synthesizes more nitric oxide in the absence of caveolin-1, but also more superoxide with potential pathogenic consequences. It is further argued that the vasodilating drive from increased nitric oxide production in caveolin-1-deficient mice is balanced by changes in the vascular media that favour increased dynamic resistance regulation. Harnessing the therapeutic opportunities buried in caveolae, while challenging, could expand the arsenal of treatment options in cancer, lung disease and atherosclerosis.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: blood pressure; cavolin-1; eNOS; free radicals; lipid rafts; pulmonary hypertension

Document Type: Research Article

Affiliations:  Division of Vascular and Airway Research, Department of Experimental Medical Science, Lund University, Lund, Sweden

Publication date: 2009-02-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more