Skip to main content

Mechanisms of metabotropic glutamate receptor-mediated synaptic signalling in cerebellar Purkinje cells

Buy Article:

$51.00 plus tax (Refund Policy)


The metabotropic glutamate receptors type 1 (mGluR1s) are required for a normal function of the mammalian cerebellum. These G-protein-coupled receptors are abundantly expressed in the principle cerebellar cells, namely the Purkinje neurones. Under physiological conditions, mGluR1s are activated during repetitive activity of both afferent glutamatergic synaptic inputs provided by the climbing and parallel fibres respectively. Unlike the common ionotropic glutamate receptors that underlie rapid synaptic excitation, mGluR1s produce a complex post-synaptic response consisting of a Ca2+-release signal from intracellular stores and a slow excitatory post-synaptic potential. While it is well established that the mGluR1-dependent Ca2+-release signal from intracellular stores involves the activation of inositol-trisphosphate receptors, the mechanisms underlying the slow synaptic excitation remained unclear. Here we will review recent evidence indicating an essential role of C-type transient receptor potential (TRPC) cation channels, especially that of the subunit TRPC3, for the generation of the mGluR1-dependent synaptic current. For the signalling pathways underlying both, Ca2+-release from intracellular stores and the slow synaptic potential, we present current knowledge about the activators, downstream effectors and possible roles for mGluR1-dependent signalling in Purkinje neurones.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Purkinje cells; calcium signalling; cerebellum; metabotropic glutamate receptor; synaptic transmission; transient receptor potential channel

Document Type: Research Article

Publication date: 2009-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more