Cell volume-induced changes in K+ transport across the rat colon

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

The effect of cell swelling and cell shrinkage on K+ transport across the rat colonic epithelium was studied by measuring unidirectional fluxes, uptake and efflux of 86Rb+, a marker for K+. Exposure to a hypotonic medium stimulated the secretory, serosa-to-mucosa flux of K+, whereas exposure to a hypertonic medium inhibited the absorptive, mucosa-to-serosa flux of K+ in the distal, but not in the proximal colon. Neither manoeuvre had any effect on the uptake of K+ across the apical or the basolateral membrane. Cell swelling induced a sustained increase in the apical and basolateral K+ efflux from both colonic segments, whereas cell shrinkage reduced the efflux. Ba2+ (10–2 mol l–1) inhibited the swelling-induced stimulation of the apical, quinine (10–3 mol l–1) that of the basolateral K+ efflux in the distal colon. Incubation of the tissue in Ca2+-free buffer or La3+, which blocks Ca2+-influx into the epithelium, strongly reduced the basal K+ efflux across the basolateral membrane. The same was observed with brefeldin A, a blocker of the transport of newly synthesized proteins out of the endoplasmatic reticulum. Swelling-induced K+ efflux, however, was not reduced. In the presence of colchicine, an inhibitor of the polymerization of microtubules, swelling evoked only a transient increase in mucosal efflux, which, especially in the proximal colon, fell after 6 min to the level of the isotonic control period. These results demonstrate that the cell volume is involved in the regulation of transepithelial K+ transport across the rat colonic epithelium and suggest a role of the cytoskeleton in the control of a part of the volume-sensitive K+ channels.

Keywords: Ca2+; K+ channels; K+ transport; cell volume; colon; cytoskeleton; electrolyte transport; rat

Document Type: Research Article

DOI: http://dx.doi.org/10.1046/j.1365-201X.2001.00806.x

Affiliations: Institut für Veterinär-Physiologie, Justus-Liebig-Universität Gießen, Gießen, Germany

Publication date: April 1, 2001

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more