Skip to main content

The effect of α-phenyl-tert-butyl nitrone (PBN) on free radical formation in transient focal ischaemia measured by microdialysis and 3,4-dihydroxybenzoate formation

Buy Article:

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.


α-phenyl-tert–butyl nitrone (PBN) reduces infarct size, improves recovery of brain energy metabolism and delays the secondary increase in extracellular potassium after focal ischaemia, presumably by trapping OH radicals. We investigated the effect of PBN on the formation of 3,4-dihydroxybenzoic acid (3,4-DHBA) as a measure of OH radical formation, during and following middle cerebral artery occlusion (MCAO). Rats, subjected to 2 h of ischaemia followed by 3 h of recirculation, were injected with either vehicle or PBN (100 mg kg–1 i.p.) prior to MCAO or immediately after recirculation, respectively. The in vivo microdialysis technique was used to collect samples for analysis of 3,4-DHBA by HPLC. The basal levels of 3,4-DHBA were 56–77 nmol L–1 in the four groups. During ischaemia, the formation of 3,4-DHBA decreased by about 50% in all groups. Upon recirculation, a 3-fold rise in 3,4-DHBA formation was seen. At 2 h of recirculation the mean value of 3,4-DHBA in the pretreated, vehicle-injected animals was 125 ± 18 nmol L–1 and in the PBN-injected 145 ± 48 nmol L–1, respectively. When the animals were treated after MCAO either with vehicle or PBN the values at 2 h recirculation were 155 ± 148 and 189 ± 145 nmol L–1, respectively. No statistically significant difference between vehicle- and PBN-injected groups was seen. We conclude that during reperfusion following MCAO, hydroxyl radical formation increases. The increase is not ameliorated by PBN which suggests that PBN does not protect the brain by a general scavenging of OH radicals, although tissue specific actions cannot be excluded.

Keywords: PBN; brain; focal ischaemia; free radicals; rat

Document Type: Research Article

Affiliations: Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Lund, Sweden

Publication date: February 1, 2000


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more