Skip to main content

Blockade of nitrergic neuroeffector transmission in guinea-pig colon by a selective inhibitor of soluble guanylyl cyclase

Buy Article:

$51.00 plus tax (Refund Policy)


The role of soluble guanylyl cyclase in nitrergic inhibitory neuroeffector transmission was investigated in the longitudinal muscle from guinea-pig colon, by using an inhibitor of soluble guanylyl cyclase, 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ). In preparations precontracted with histamine, electrical field stimulation (EFS) or exogenous nitric oxide (NO) induced relaxations. The relaxation induced by NO-application was abolished by ODQ. Both ODQ and the NO-synthase inhibitor N ω-nitro-L-arginine (L-NOARG) partially inhibited the EFS-evoked relaxation to a similar extent. These effects were dose-dependent. The inhibition was more pronounced in the late phase of the EFS-induced relaxation. The inhibitory effect of ODQ on EFS-induced relaxation was not affected by additional application ofL-NOARG. When NO-formation was blocked byL-NOARG, a subsequent addition of ODQ gave no further inhibition of the relaxation. These findings suggest that inhibitory non-adrenergic, non-cholinergic neurotransmission in guinea-pig colon is dependent on endogenous formation of NO, and that the NO-effect is exclusively mediated via the soluble guanylyl cyclase pathway. The existence of an NO-independent inhibitory transmission, which is not mediated through the cyclic GMP pathway, is also indicated. Furthermore, it is demonstrated that the NO/soluble guanylyl cyclase-independent transmission has an earlier onset as compared with the NO/soluble guanylyl cyclase-dependent pathway.

Keywords: ODQ; autonomic neurotransmission; nitric oxide; smooth muscle relaxation; soluble guanylyl cyclase

Document Type: Original Article


Affiliations: Department of Physiology and Pharmacology, Karolinska Institute, Stockholm

Publication date: January 1, 1998

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more