Skip to main content

Blockade of nitrergic neuroeffector transmission in guinea-pig colon by a selective inhibitor of soluble guanylyl cyclase

Buy Article:

$43.00 plus tax (Refund Policy)

The role of soluble guanylyl cyclase in nitrergic inhibitory neuroeffector transmission was investigated in the longitudinal muscle from guinea-pig colon, by using an inhibitor of soluble guanylyl cyclase, 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ). In preparations precontracted with histamine, electrical field stimulation (EFS) or exogenous nitric oxide (NO) induced relaxations. The relaxation induced by NO-application was abolished by ODQ. Both ODQ and the NO-synthase inhibitor N ω-nitro-L-arginine (L-NOARG) partially inhibited the EFS-evoked relaxation to a similar extent. These effects were dose-dependent. The inhibition was more pronounced in the late phase of the EFS-induced relaxation. The inhibitory effect of ODQ on EFS-induced relaxation was not affected by additional application ofL-NOARG. When NO-formation was blocked byL-NOARG, a subsequent addition of ODQ gave no further inhibition of the relaxation. These findings suggest that inhibitory non-adrenergic, non-cholinergic neurotransmission in guinea-pig colon is dependent on endogenous formation of NO, and that the NO-effect is exclusively mediated via the soluble guanylyl cyclase pathway. The existence of an NO-independent inhibitory transmission, which is not mediated through the cyclic GMP pathway, is also indicated. Furthermore, it is demonstrated that the NO/soluble guanylyl cyclase-independent transmission has an earlier onset as compared with the NO/soluble guanylyl cyclase-dependent pathway.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: ODQ; autonomic neurotransmission; nitric oxide; smooth muscle relaxation; soluble guanylyl cyclase

Document Type: Original Article

Affiliations: Department of Physiology and Pharmacology, Karolinska Institute, Stockholm

Publication date: 1998-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more