Skip to main content

Modulation of major voltage- and ligand-gated ion channels in cultured neurons of the rat inferior colliculus by lidocaine

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Abstract

Aim: The purpose of the present study was to explore how lidocaine as a therapeutic drug for tinnitus targets voltage-and ligand-gated ion channels and changes the excitability of central auditory neurons. Methods: Membrane currents mediated by major voltage-and ligand-gated channels were recorded from primary cultured neurons of the inferior colliculus (IC) in rats with whole-cell patch-clamp techniques in the presence and absence of lidocaine. The effects of lidocaine on the current-evoked firing of action potentials were also examined. Results: Lidocaine at 100 mol/L significantly suppressed voltage-gated sodium currents, transient outward potassium currents, and the glycine-induced chloride currents to 87.66 ± 2.12%, 96.33 ± 0.35%, and 91.46 ± 2.69% of that of the control level, respectively. At 1 mmol/L, lidocaine further suppressed the 3 currents to 70.26 ± 4.69%, 62.80 ± 2.61%, and 89.11 ± 3.17% of that of the control level, respectively. However, lidocaine at concentrations lower than 1 mmol/L did not significantly affect GABA-or aspartate-induced currents. At a higher concentration (3 mmol/L), lidocaine slightly depressed the GABA-induced current to 87.70 ± 1.87% of that of the control level. Finally, lidocaine at 100 mol/L was shown to significantly suppress the current-evoked firing of IC neurons to 58.62 ± 11.22% of that of the control level, indicating that lidocaine decreases neuronal excitability. Conclusion: Although the action of lidocaine on the ion channels and receptors is complex and non-specific, it has an overall inhibitory effect on IC neurons at a clinically-relevant concentration, suggesting a central mechanism for lidocaine to suppress tinnitus.

Keywords: GABAA receptor; N-methyl-D-aspartate receptor; glycine receptor; inferior colliculus; lidocaine; potassium channel; sodium channel; tinnitus; whole-cell patch-clamp

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1745-7254.2008.00893.x

Affiliations: Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China

Publication date: December 1, 2008

bsc/aphs/2008/00000029/00000012/art00002
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more