Skip to main content

Animal models of Huntington's disease: implications in uncovering pathogenic mechanisms and developing therapies

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, which is caused by an abnormal expansion of Cytosine Adenine Guanine (CAG) trinucleotide repeat in the gene making huntingtin (Htt). Despite intensive research efforts devoted to investigate molecular mechanisms of pathogenesis, effective therapy for this devastating disease is still not available at present. The development of various animal models of HD has offered alternative approaches in the study of HD molecular pathology. Many HD models, including chemical-induced models and genetic models, mimic some aspects of HD symptoms and pathology. To date, however, there is no ideal model which replicates all of the essential features of neuropathology and progressive motor and cognitive impairments of human HD. As a result, our understanding of molecular mechanisms of pathogenesis in HD is still limited. A new model is needed in order to uncover the pathogenesis and to develop novel therapies for HD. In this review we discussed usefulness and limitations of various animal and cellular models of HD in uncovering molecular mechanisms of pathogenesis and developing novel therapies for HD.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Huntington's disease; animal models; huntingtin; neuro-degeneration

Document Type: Research Article

Affiliations: Department of Physiology, Soochow University School of Medicine, Suzhou 215123, China

Publication date: 2006-10-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more