Skip to main content

The life history of a gall‐inducing mite: summer phenology, predation and influence of gall morphology in a sugar maple canopy

Buy Article:

$43.00 plus tax (Refund Policy)

Eriophyoid mites are among the most ubiquitous gall‐inducing arthropods, and are adapted species‐specifically to a broad diversity of plants, although their life histories remain poorly studied outside agricultural systems.

We examined the seasonal phenology of a leaf‐galling eriophyid mite, the maple spindle gall mite Vasates aceriscrumena (MSGM), in naturally occurring stands of sugar maple Acer saccharum in south‐central Ontario in 2007 and 2008.

Galls were first induced in spring (mid‐May) and were devoid of mites by late August. In the study region, MSGM appears to have at least two generations, with overwintering, deutogyne females that initiate galls in spring (mid‐May) after leaf flush, giving rise to a generation of protogyne (primary) females and a few morphologically similar males (<1 for every 10 females) and, subsequently, to a new generation of deutogyne females in mid‐July to early August. In July, some galls can be highly crowded, with 50–200 individuals per gall.

In addition, a tarsonemid mite, Tarsonemus acerbilis, was found in approximately 40% of MSGM galls examined. As much as 95.4% of galls in 2007 and 97.4% in 2008 that contained tarsonemid larvae did not contain MSGM eggs (by contrast, only 2.3% of tarsonemid‐free galls contained no MSGM eggs), suggesting that these juveniles feed, at least opportunistically, on MSGM eggs.

Gall ostiole morphology appeared to influence both MSGM and Tarsonemus densities within galls, with ‘open’ ostioles (versus ‘closed’) being much more susceptible to invasion by the tarsonemid. The latter is likely to be an important regulator of MSGM populations. We hypothesize that the two ostiole types are the result of selection pressures on the gall inducer, favouring closed gall entrances for increased protection, and possibly also on the host tree, favouring open galls to increase predator access.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-08-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more