Skip to main content

Effects of genotype, elevated CO2 and elevated O3 on aspen phytochemistry and aspen leaf beetle Chrysomela crotchi performance

Buy Article:

$43.00 plus tax (Refund Policy)

• Trembling aspen Populus tremuloides Michaux is an important forest species in the Great Lakes region and displays tremendous genetic variation in foliar chemistry. Elevated carbon dioxide (CO2) and ozone (O3) may also influence phytochemistry and thereby alter the performance of insect herbivores such as the aspen leaf beetle Chrysomela crotchi Brown.

• The present study aimed to relate genetic- and atmospheric-based variation in aspen phytochemistry to C. crotchi performance (larval development time, adult mass, survivorship). The experiment was conducted at the Aspen Free-Air CO2 Enrichment (FACE) site in northern Wisconsin. Beetles were reared on three aspen genotypes under elevated CO2 and/or O3. Leaves were collected to determine chemical characteristics.

• The foliage exhibited significant variation in nitrogen, condensed tannins and phenolic glycosides among genotypes. CO2 and O3, however, had little effect on phytochemistry. Nonetheless, elevated CO2 decreased beetle performance on one aspen genotype and had inconsistent effects on beetles reared on two other genotypes. Elevated O3 decreased beetle performance, especially for beetles reared on an O3-sensitive genotype. Regression analyses indicated that phenolic glycosides and nitrogen explain a substantial amount (27–45%) of the variation in herbivore performance.

• By contrast to the negative effects that are typically observed with generalist herbivores, aspen leaf beetles appear to benefit from phenolic glycosides, chemical components that are largely genetically-determined in aspen. The results obtained in the present study indicate that host genetic variation and atmospheric concentrations of greenhouse gases will be important factors in the performance of specialist herbivores, such as C. crotchi, in future climates.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Carbon dioxide; FACE; Populus tremuloides; herbivore performance; ozone; ozone-tolerance; phenolic glycosides; plant–insect interactions; specialist; trembling aspen

Document Type: Research Article

Publication date: 2010-08-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more