Skip to main content

Variation in the impact of exotic grasses on native plant composition in relation to fire across an elevation gradient in Hawaii

Buy Article:

$43.00 plus tax (Refund Policy)


The impact that an exotic species can have on the composition of the community it enters is a function of its abundance, its particular species traits and characteristics of the recipient community. In this study we examined species composition in 14 sites burned in fires fuelled by non-indigenous C4 grasses in Hawaii Volcanoes National Park, Hawaii. We considered fire intensity, time since fire, climatic zone of site, unburned grass cover, unburned native cover and identity of the most abundant exotic grass in the adjacent unburned site as potential predictor variables of the impact of fire upon native species. We found that climatic zone was the single best variable for explaining variation in native cover among burned sites and between burned and unburned pairs. Fire in the eastern coastal lowlands had a very small effect on native plant cover and often stimulated native species regeneration, whereas fire in the seasonal submontane zone consistently caused a decline in native species cover and almost no species were fire tolerant. The dominant shrub, Styphelia tameiameia, in particular was fire intolerant. The number of years since fire, fire intensity and native cover in reference sites were not significantly correlated with native species cover in burned sites. The particular species of grass that carried the fire did however, have a significant effect on native species recovery. Where the African grass Melinis minutiflora was a dominant or codominant species, fire impacts were more severe than where it was absent regardless of climate zone. Overall, the impacts of exotic grass-fuelled fires on native species composition and cover in seasonally dry Hawaiian ecosystems was context specific. This specificity is best explained by differences between the climatic zones in which fire occurred. Elevation was the main physical variable that differed among the climatic zones and it alone could explain a large percentage of the variation in native cover among sites. Rainfall, by contrast, did not vary systematically with elevation. Elevation is associated with differences in composition of the native species assemblages. In the coastal lowlands, the native grass Heteropogon contortus, was largely responsible for positive changes in native cover after fire although other native species also increased. Like the exotic grasses, this species is a perennial C4 grass. It is lacking in the submontane zone and there are no comparable native species there and almost all native species in the submontane zone were reduced by fire. The lack of fire tolerant species in the submontane zone thus clearly contributes to the devastating impact of fire upon native cover there.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: C4 grasses; alien species; fire intensity; fire regime; initial conditions; introduced species; recipient community

Document Type: Research Article

Affiliations: 1: Department of Integrative Biology, University of California, Berkeley, CA 94720, USA ( Email:, Email: [email protected] 2: Resources Management Division, Hawaii Volcanoes National Park, Hawaii, USA

Publication date: 2000-10-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more