Skip to main content

Nitrite reduction by the red cell membrane: a mechanism with a biological role?

Buy Article:

$51.00 plus tax (Refund Policy)

The possible role of nitric oxide (NO) metabolites in vivo has gained much interest in recent years, in particular, the interaction of these species with red blood cells. We investigated the potential for the membrane of red blood cells to act as a nitrite reductase site. Using both EPR (electromagnetic resonance spectroscopy) and ozone based chemiluminescence we were able to demonstrate NO generation from nitrite by the red cell membrane. The exact components responsible for this action are yet to be elucidated, but the response was unchanged by L-NMMA suggesting that eNOS is not involved. Reduction at the membrane could provide an entry route for NO into the red cell where it could produce potentially bioactive species e.g. nitrosylated proteins (RSNOs). If the nitrite reduction occurred on the outer surface of the red cell membrane it is also feasible that some NO may escape auto capture by that red cell, however in whole blood it is likely to be rapidly metabolised. In conclusion, this mechanism could provide a route by which nitrite, acting as a substrate, could be reduced to NO and form other, more biologically accessible species.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Abstract

Affiliations: 1: The Wales Heart Research Institute, Department of Cardiology, Cardiff University School of Medicine, Heath Campus, Cardiff, CF14 4XN. Corresponding, Email: 2: The School of Applied Sciences, University of Wales Institute Cardiff, Llandaff Campus, Western Avenue, Cardiff, CF5 2YB

Publication date: 2009-07-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more