If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Approximation Theory Applied to DEM Vertical Accuracy Assessment

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Abstract

Existing research on DEM vertical accuracy assessment uses mainly statistical methods, in particular variance and RMSE which are both based on the error propagation theory in statistics. This article demonstrates that error propagation theory is not applicable because the critical assumption behind it cannot be satisfied. In fact, the non‐random, non‐normal, and non‐stationary nature of DEM error makes it very challenging to apply statistical methods. This article presents approximation theory as a new methodology and illustrates its application to DEMs created by linear interpolation using contour lines as the source data. Applying approximation theory, a DEM's accuracy is determined by the largest error of any point (not samples) in the entire study area. The error at a point is bounded by max(|δnode |+M 2 h 2/8) where |δnode | is the error in the source data used to interpolate the point, M 2 is the maximum norm of the second‐order derivative which can be interpreted as curvature, and h is the length of the line on which linear interpolation is conducted. The article explains how to compute each term and illustrates how this new methodology based on approximation theory effectively facilitates DEM accuracy assessment and quality control.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1467-9671.2012.01343.x

Affiliations: 1: Department of Geography and Human Environmental Studies, San Francisco State University 2: School of Resource and Environmental Engineering, AnHui University and School of Resource and Environmental Science, Wuhan University 3: School of Resource and Environmental Science, Wuhan University

Publication date: June 1, 2012

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more