Skip to main content

Enhancing a GIS Cellular Automata Model of Land Use Change: Bayesian Networks, Influence Diagrams and Causality

Buy Article:

$51.00 plus tax (Refund Policy)



Cellular Automata (CA) models at present do not adequately take into account the relationship and interactions between variables. However, land use change is influenced by multiple variables and their relationships. The objective of this study is to develop a novel CA model within a geographic information system (GIS) that consists of Bayesian Network (BN) and Influence Diagram (ID) sub-models. Further, the proposed model is intended to simplify the definition of parameter values, transition rules and model structure. Multiple GIS layers provide inputs and the CA defines the transition rules by running the two sub-models. In the BN sub-model, land use drivers are encoded with conditional probabilities extracted from historical data to represent inter-dependencies between the drivers. Using the ID sub-model, the decision of changing from one land use state to another is made based on utility theory. The model was applied to simulate future land use changes in the Greater Vancouver Regional District (GVRD), Canada from 2001 to 2031. The results indicate that the model is able to detect spatio-temporal drivers and generate various scenarios of land use change making it a useful tool for exploring complex planning scenarios.

Keywords: Bayesian Networks; Cellular Automata; Geographic Information Systems (GIS); Influence Diagrams; Land Use Change; Spatial Modeling

Document Type: Research Article


Affiliations: 1: Spatial Analysis and Modeling Laboratory 2: Department of Geography Simon Fraser University

Publication date: October 1, 2007


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more