Skip to main content

Defining and Delineating the Central Areas of Towns for Statistical Monitoring Using Continuous Surface Representations

Buy Article:

$51.00 plus tax (Refund Policy)

In the UK, the increasing availability of very high spatial resolution data using the unit post code as its geo-reference is making possible new kinds of urban analysis and modelling. However, at this resolution the granularity of the data used to represent urban functions makes it difficult to apply traditional analytical and modelling methods. An alternative suggested here is to use kernel density estimation to transform these data from point or area ‘objects’ into continuous surfaces of spatial densities. The use of this transformation is illustrated by a study in which we attempt to develop a robust, generally applicable methodology for identifying the central areas of UK towns for the purpose of statistical reporting and comparison. Continuous density transformations from unit post code data relating to a series of indicators of town centredness created using Arc/InfoTM are normalised and then summed to give a composite ‘Index of Town Centredness’. Selection of key contours on these index surfaces enables town centres to be delineated.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Original Article

Affiliations: 1: University College London, University of London, 2: Birkbeck College, University of London

Publication date: 2000-10-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more