Skip to main content

Very‐short‐term probabilistic forecasting of wind power with generalized logit–normal distributions

Buy Article:

$43.00 plus tax (Refund Policy)

Summary.  Very‐short‐term probabilistic forecasts, which are essential for an optimal management of wind generation, ought to account for the non‐linear and double‐bounded nature of that stochastic process. They take here the form of discrete–continuous mixtures of generalized logit–normal distributions and probability masses at the bounds. Both auto‐regressive and conditional parametric auto‐regressive models are considered for the dynamics of their location and scale parameters. Estimation is performed in a recursive least squares framework with exponential forgetting. The superiority of this proposal over classical assumptions about the shape of predictive densities, e.g. normal and beta, is demonstrated on the basis of 10‐min‐ahead point and probabilistic forecasting at the Horns Rev wind farm in Denmark.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Technical University of Denmark, Lyngby, Denmark

Publication date: 2012-08-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more