Skip to main content

Constrained multiobjective designs for functional magnetic resonance imaging experiments via a modified non‐dominated sorting genetic algorithm

Buy Article:

$51.00 plus tax (Refund Policy)

Summary.  Functional magnetic resonance imaging (MRI) is an advanced technology for studying brain functions. Owing to the complexity and high cost of functional MRI experiments, high quality multiobjective functional MRI designs are in great demand; they help to render precise statistical inference and are keys to the success of functional MRI experiments. Here, we propose an efficient approach for obtaining multiobjective functional MRI designs. In contrast with existing methods, the approach proposed does not require users to specify weights for the different objectives and can easily handle constraints to fulfil customized requirements. Moreover, the underlying statistical models that we consider are more general. We can thus obtain designs for cases where brief, long or varying stimulus durations are utilized. The usefulness of our approach is illustrated by using various experimental settings.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: 1: Arizona State University, Tempe, USA 2: University of Georgia, Athens, USA

Publication date: 2012-08-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more