Skip to main content

Automated feature extraction from profiles with application to a batch fermentation process

Buy Article:

$43.00 plus tax (Refund Policy)

Summary.  An automated approach to extract interpretable features of univariate or multivariate profiles (functional data) is proposed. A landmark alignment algorithm is modified and the alignment is combined with piecewise linear approximations. Least absolute shrinkage and selection operator (lasso) regression is used for selecting the most important intercepts and slopes and yields an alternative to partial least squares to model a response associated with the profiles. Latent variables can be difficult to interpret but our extracted features simply correspond to slopes and intercepts of particular parts of the profiles. Also, features that relate to the degree of warping between a given profile and a reference can be extracted as predictors. Selection criteria for the number of knots and common knot locations between profiles are developed. We apply our proposed method to batch fermentation data where the profiles consist of on‐line measurements of process variables and the corresponding yield of the process. The extracted features have good interpretability (with large dimensional reduction) and in combination with the lasso have prediction accuracy which is comparable with that of partial least squares applied to the original profiles. Also our proposed feature extraction method is applied to publicly available data where near infrared spectra define the profiles and the prediction accuracy of our feature lasso method is comparable with those of more complicated alternatives.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Novo Nordisk, Gentofte, Denmark 2: Arizona State University, Tempe, USA

Publication date: 2012-03-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more