Skip to main content

Managing structural uncertainty in health economic decision models: a discrepancy approach

Buy Article:

$43.00 plus tax (Refund Policy)

Summary. Healthcare resource allocation decisions are commonly informed by computer model predictions of population mean costs and health effects. It is common to quantify the uncertainty in the prediction due to uncertain model inputs, but methods for quantifying uncertainty due to inadequacies in model structure are less well developed. We introduce an example of a model that aims to predict the costs and health effects of a physical activity promoting intervention. Our goal is to develop a framework in which we can manage our uncertainty about the costs and health effects due to deficiencies in the model structure. We describe the concept of ‘model discrepancy’: the difference between the model evaluated at its true inputs, and the true costs and health effects. We then propose a method for quantifying discrepancy based on decomposing the cost‐effectiveness model into a series of subfunctions, and considering potential error at each subfunction. We use a variance‐based sensitivity analysis to locate important sources of discrepancy within the model to guide model refinement. The resulting improved model is judged to contain less structural error, and the distribution on the model output better reflects our true uncertainty about the costs and effects of the intervention.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: University of Sheffield, UK

Publication date: 2012-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more