Skip to main content

Modelling price paths in on-line auctions: smoothing sparse and unevenly sampled curves by using semiparametric mixed models

Buy Article:

$43.00 plus tax (Refund Policy)


On-line auctions pose many challenges for the empirical researcher, one of which is the effective and reliable modelling of price paths. We propose a novel way of modelling price paths in eBay's on-line auctions by using functional data analysis. One of the practical challenges is that the functional objects are sampled only very sparsely and unevenly. Most approaches rely on smoothing to recover the underlying functional object from the data, which can be difficult if the data are irregularly distributed. We present a new approach that can overcome this challenge. The approach is based on the ideas of mixed models. Specifically, we propose a semiparametric mixed model with boosting to recover the functional object. As well as being able to handle sparse and unevenly distributed data, the model also results in conceptually more meaningful functional objects. In particular, we motivate our method within the framework of eBay's on-line auctions. On-line auctions produce monotonic increasing price curves that are often correlated across auctions. The semiparametric mixed model accounts for this correlation in a parsimonious way. It also manages to capture the underlying monotonic trend in the data without imposing model constraints. Our application shows that the resulting functional objects are conceptually more appealing. Moreover, when used to forecast the outcome of an on-line auction, our approach also results in more accurate price predictions compared with standard approaches. We illustrate our model on a set of 183 closed auctions for Palm M515 personal digital assistants.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Boosting; Mixed model; Non-parametric methods; On-line auction; Penalized splines; Smoothing; eBay

Document Type: Research Article

Affiliations: 1: Ludwig-Maximilians-Universität, München, Germany 2: University of Maryland, College Park, USA

Publication date: 2008-04-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more