Skip to main content

A Bayesian ordinal logistic regression model to correct for interobserver measurement error in a geographical oral health study

Buy Article:

$51.00 plus tax (Refund Policy)



We present an approach for correcting for interobserver measurement error in an ordinal logistic regression model taking into account also the variability of the estimated correction terms. The different scoring behaviour of the 16 examiners complicated the identification of a geographical trend in a recent study on caries experience in Flemish children (Belgium) who were 7 years old. Since the measurement error is on the response the factor ‘examiner’ could be included in the regression model to correct for its confounding effect. However, controlling for examiner largely removed the geographical east–west trend. Instead, we suggest a (Bayesian) ordinal logistic model which corrects for the scoring error (compared with a gold standard) using a calibration data set. The marginal posterior distribution of the regression parameters of interest is obtained by integrating out the correction terms pertaining to the calibration data set. This is done by processing two Markov chains sequentially, whereby one Markov chain samples the correction terms. The sampled correction term is imputed in the Markov chain pertaining to the regression parameters. The model was fitted to the oral health data of the Signal–Tandmobiel® study. A WinBUGS program was written to perform the analysis.

Keywords: Bayesian analysis; Calibration exercise; Errors in variables; Markov chain Monte Carlo methods; Measurement error; Ordinal logistic regression

Document Type: Research Article


Affiliations: Katholieke Universiteit Leuven, Belgium

Publication date: 2005-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more